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E-mail: mkroeger@mat.ethz.ch

Received 9 October 2002
Published 7 April 2003
Online at stacks.iop.org/JPhysCM/15/S1403

Abstract
We review, apply and compare diverse approaches to the theoretical
understanding of the dynamical and rheological behaviour of ferrofluids and
magnetorheological (MR) fluids subject to external magnetic and flow fields.
Simple models are introduced which are directly solvable by nonequilibrium
Brownian or molecular dynamics computer simulation. In particular, the
numerical results for ferrofluids quantify the domain of validity of uniaxial
alignment of magnetic moments (in and) out of equilibrium. A Fokker–Planck
equation for the dynamics of the magnetic moments—corresponding to the
Brownian dynamics approach—and its implications are analysed under this
approximation. The basic approach considers the effect of external fields on the
dynamics of ellipsoid shaped permanent ferromagnetic domains (aggregates),
whose size should depend on the strength of flow and magnetic field,
the magnetic interaction parameter and concentration (or packing fraction).
Results from analytic calculations and from simulation are summarized for the
anisotropy of the viscosity. In order to study the effect of flow on the anisotropic
viscosities and shear-induced structures of MR fluids and ferrofluids subject to
a strong external magnetic field, a simple model of perfectly oriented particles
is considered.

1. Introduction

Magnetorheological (MR) fluids contain particles that are paramagnetic, i.e. become
magnetized on application of a magnetic field. Ferrofluids, on the other hand, contain colloidal
particles with a permanent ferromagnetic core. Both types of fluids, usually composed of
spherical particles, show an anisotropic flow behaviour in the presence of a magnetic field.
Ferrofluids, however, show a flow-induced anisotropy even in the absence of an external
magnetic field due to their ability to form magnetic aggregates or superstructures in the field-
free state. These fluids are usually stabilized against agglomeration by coating particles with
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Figure 1. Schematic drawing depicting the geometry of the physical situation. For the measurement
of the Miesowicz viscosities η1,2,3 and the viscosity η4 the magnetization induced by the external
magnetic field has to point in flow (1), flow gradient (2) and vorticity (3) directions. The
ellipsoids of revolution considered within the FP approach are characterized by a single shape
factor 0 < Q < ∞, where Q > 1 and Q < 1 for rod-like and disc-like aggregates, respectively.

long-chain molecules (sterically) or decorating them with charged groups (electrostatically).
Particles interact with each other by the long-range anisotropic dipole–dipole potential as well
as the short-range symmetric potentials, such as the steric repulsion, the electrostatic repulsion
and the van der Waals attraction. The rheology of ferrofluids can be understood in terms
of the concurrent orienting mechanism stemming from flow and magnetic field, where the
coupling to the flow field becomes increasingly important with the formation of aggregates,
see figure 1. Dipolar interactions, present in both types of fluids, influence the pair correlation
function. Its characteristic anisotropy and shear-induced distortion are directly related to the
rheological properties. The magnetic relaxation is dominated by two distinct mechanisms: the
Néel relaxation describes the reorientation of the magnetic core relative to the particle’s surface
which is in contact with the carrier fluid. This is in contrast to the Brownian process, where
relaxation takes place via rotation of the whole particle relative to the fluid. For sufficiently
large particles the Brownian mechanism prevails. This is the case considered in sections 3
and 4, while section 5 deals with (fully) oriented magnetic moments.

Phenomenologically, the anisotropy of the viscosity can be characterized by the same
set of viscosity coefficients [1] as used for uniaxial nematic liquid crystals in the presence
of an orienting (electric or magnetic) field [2–7]. This is not obvious, since the magnetic
field introduces a new direction, but will be clarified below for the case of uniaxial symmetry,
where this statement applies. Moreover, the microscopic mechanisms leading to the anisotropic
viscous behaviour are rather different in these systems. Even for ferrofluids, the microscopic
mechanisms responsible for the peculiar flow behaviour of dilute solutions, where the magnetic
field-induced change of the viscosity is linear with the concentration of ferrofluid particles,
are different from that of more concentrated solutions. There the direct anisotropic interaction
between the ferrofluid particles becomes the dominating mechanism. Theoretical descriptions
applicable to ferrofluids are given in [8–11]. In [11] the linear and nonlinear rheological
behaviour of dilute ferrofluids is determined from an underlying kinetic model and the
dependence of the viscosity coefficient on the scalar orientational order parameters is obtained.
In the case of uniaxial symmetry, the antisymmetric contribution to the hydrodynamic stress
tensor is of the same form as in the classical Ericksen–Leslie theory of uniaxial nematic liquid
crystals and the linear magnetoviscosity is found to coincide with earlier results obtained by
the effective field method [11–13]. While the assumption of uniaxial symmetry is fulfilled
exactly in the limit of strong vorticity and weak magnetic field, the exact result for the linear
magnetoviscosity shows corrections due to contributions from biaxial symmetry.
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A number of theoretical models allow the evaluation of the equilibrium magnetization
of ferrofluids [14–21]. Among them, the mean-spherical model [16, 17], the thermodynamic
perturbation model [18] and the modified variant of the effective field model [19] have been
shown to give good results for the magnetic properties of ferrofluids with low or moderate
concentrations of magnetic particles (up to 10–12%). For ferrofluids of higher concentration,
larger particle size or at low temperature, these descriptions become insufficient [20, 22].
In [23] the kinetic model of non-interacting magnetic dipoles [8] is extended to incorporate
the effect of weak dipolar interactions. The extended model shows similarities to the dynamic
mean-field theory of liquid crystalline polymers proposed in [24]. In qualitative agreement
with experimental results, this model predicts an enhanced equilibrium magnetization, the
existence of an anisotropy of the viscosity tensor characterized by five independent viscosity
coefficients, normal stress differences and an improved concentration dependence of the
viscosity coefficients.

To highlight the phenomena associated with the case of more concentrated MR
suspensions, a simple model of perfectly aligned magnetic moments is also reviewed here.
It has previously been used to treat equilibrium [25] and nonequilibrium properties [25–
30] of dense ferrofluids and MR fluids, where a yield stress can occur in the presence of
a magnetic field, and agglomerates, or chains, are formed at sufficiently large magnetic
interaction strength. Chains break down under shear. As a consequence, one observes a strong
shear thinning. This not only occurs in MR fluids, but also in ferrofluids composed of particles
with permanent magnetic dipole moments, even without an applied field. Methods developed
for the study of flow properties of ‘living polymers’ [31–33] and actin filaments [34] can be
applied to ferrofluids. In order to study the effect of clustering on the rheological properties,
a phenomenon first discussed by Rosensweig [35], implications of a Fokker–Planck (FP)
equation for ellipsoidal ferromagnetic aggregates [13] will be discussed below.

This paper is organized as follows. Section 2 contains remarks about isotropic and
anisotropic viscosities, their measurement, their qualitative behaviours and their relevance
for the rheological description of ferrofluids with special emphasis on the case of shear flow.
Section 3 starts from a FP equation for dilute suspensions of ferrofluids subject to external fields.
Here, expressions for the viscosities in terms of order parameters are obtained, underpinning
the qualitative discussion of section 2. Results for the FP extension to the case of ellipsoidal
aggregates are reported in section 3, and the predictions are further compared with a numerical
solution of the FP equation, i.e. with results from nonequilibrium Brownian dynamics (NEBD)
computer simulations in section 4. Next in section 5, we present nonequilibrium molecular
dynamics (NEMD) results for a simple many-particle model of MR fluids which does not take
into account the effect of orientational degrees of freedom of paramagnetic particles. The
model of perfectly oriented magnetic moments (all order parameters become unity) already
provides us with a ‘realistic scenario’ for the dependence of anisotropic viscosities and the
related structural behaviour on the magnetic interaction parameter and shear rate, see section 6.
It also provides a microscopically based measurement of the size of agglomerates and allows
us to test the effect of concentration on the rheological and structural properties, and to quantify
the applicability of the results obtained from the FP approach.

2. Anisotropic viscosities

General remarks, isotropic liquids

The viscosity characterizes the transport of linear momentum through a fluid. For a simple
shear flow geometry v = (vx(y), 0, 0) with flow (x), gradient (y) and vorticity (z) direction,
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the (shear) viscosity is defined as the ratio of the component pyx of the pressure (negative
stress) tensor and shear rate γ̇ = ∂vx/∂y through pyx = −ηγ̇ . For a more general geometry,
a tensorial description is needed. The pressure tensor P occurring in the local conservation
equation for the linear momentum ρ dv/dt + ∇ · P = 0 is the sum of its equilibrium value
Peq1, where 1 is the unit tensor, and of the friction pressure tensor p: P = Peq1 + p. Like any
second rank tensor, the latter quantity can be decomposed into its isotropic, antisymmetric and
symmetric traceless parts:

p = p1 + 1
2ε · pa + p , (1)

where p = Trp/3 is one-third of the trace of the friction pressure tensor. The antisymmetric
part of the tensor involves the pseudo-vector pa = −ε: p, where the quantity ε is the
totally antisymmetric isotropic third rank (Levi–Civita) tensor. The symbol . . . indicates
the symmetric traceless part of a tensor, in particular: p = (p + pT)/2 − (Trp)1/3. The
velocity gradient tensor can be decomposed, in analogy to (1), ∇v = (∇ · v)1/3 + ε · ω + γ.
The divergence ∇ · v of the velocity field vanishes for a volume conserving flow of a
practically incompressible fluid. The quantity ω = (∇ × v)/2 is the vorticity of the

flow field. The symmetric traceless part of the velocity gradient tensor, γ ≡ ∇v =
(∇v + (∇v)T)/2 − (∇ · v)1/3 is referred to as the deformation rate tensor.

The antisymmetric part of the pressure tensor is identically zero for substances composed
of point particles with isotropic interaction. Under most practical circumstances, in particular
for stationary situations and in the absence of external fields, the antisymmetric part of the
pressure tensor becomes zero for molecular fluids in the isotropic phase. As a consequence,
the quantity pa vanishes. Then, in the linear flow regime, two viscosity coefficients, namely the
above-mentioned shear viscosity η and the bulk or volume viscosity ηV, suffice to characterize

the viscous behaviour of an isotropic fluid: p = −2η ∇v , p = −ηV∇ · v. Note again
that, for an incompressible fluid, or for a volume conserving flow, one has ∇ · v = 0. In the
following we will focus on results for incompressible fluids.

The viscosity coefficients of nematic liquid crystals and ferrofluids

For a nematic fluid with the director field n = n(t, r), and with the corotational time derivative
of the director denoted by N ≡ ṅ − ω × n the ansatz [1, 5]

−p = α1γ: nnnn + α2nN + α3Nn + α4γ + α5nn · γ + α6γ · nn

+ ζ1nn: γ1 + ζ2(∇ · v)nn + ζ3(∇ · v)1 (2)

is used to describe the viscosity. This relation is linear in the velocity gradient and in the
corotational derivative of the director. Furthermore, it is invariant under the replacement of n

by −n, as it should be. The Leslie coefficients α1, . . . , α6 and the coefficients ζ1, ζ2, ζ3 have
the dimension of a viscosity.

Decomposition of the pressure tensor and the velocity gradient tensor into their isotropic,
antisymmetric and symmetric traceless parts leads to the linear constitutive laws [1]

p = −2ηγ − 2η̃1 nn · γ − 2η̃2 nN

− 2η̃3 nn nn: γ − ζ2 nn (∇ · v), (3)

pa = ε: (γ1nN + γ2 nn · γ), (4)

p = −ηV∇ · v − κγ: nn. (5)
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The viscosity coefficients used in equations (3)–(5) are related to those of equation (2)
by 2η = α4 + (α5 + α6)/3, 2η̃1 = (α5 + α6), 2η̃2 = (α2 + α3), 2η̃3 = α1, γ1 = α3 − α2,
γ2 = α6 − α5, ηV = ζ2/3 + ζ3, and κ = ζ1 + (α1 + α5 + α6)/3. The dyadic nn stems
from the second rank alignment tensor. The coefficients linking second with first rank tensors,
and second rank tensors with scalars (rank 0) obey Onsager symmetry relations. These are
2η̃2 = γ2, ζ2 = κ , where the first of these relations is equivalent to the Onsager–Parodi
relation [4] α2 + α3 = α6 − α5. Due to the symmetry relations, only 7 of the 9 viscosity
coefficients are linearly independent. In an isotropic fluid all coefficients vanish except for the
shear viscosity η = 1

2 α4 and the bulk viscosity ηV = ζ3. Positive entropy production requires
η > 0, ηV > 0, γ1 > 0 but η̃1, η̃2, η̃3 and γ2 may have either sign. One standard set of viscosity
coefficients are the α1, . . . , α6 of equation (2). The coefficients occurring in the ansatz (3)–
(5) can be preferable in connection with theoretical considerations. In experiments and in
NEMD simulations, linear combinations of the ‘basic’ viscosity coefficients are measured and
calculated. Some examples are mentioned next.

In a plane Couette or a plane Poiseuille flow with the velocity in the x direction and its
gradient in the y direction one has ∇v = γ̇ eyex , ω = −γ̇ ez/2, with the shear rate γ̇ = ∂vx/∂y,
and ex,y,z are unit vectors parallel to the x-, y-, z-coordinate axes. The Miesowicz viscosities
ηi , i = 1, 2, 3 are defined as the ratio of the negative yx component of the pressure tensor and
the shear rate γ̇ : p(i)

yx = −ηi γ̇ . The label i = 1, 2, 3 refers to the cases where the director n

is parallel to the x , y and z axis, respectively. The orienting (magnetic) field has to be strong
enough to overcome the flow induced orientation. A fourth coefficient η4 with n parallel to
the bisector between the x and y axes is needed to characterize the shear viscosity completely.
Instead of η4, the Helfrich viscosity coefficient η12 = 4η4 − 2(η1 + η2) is used in addition
to the Miesowicz coefficients. The ‘rotational’ viscosity γ1 can be measured via the torque
exerted on a nematic liquid crystal in the presence of a rotating magnetic field: the Tsvetkov
effect [36–38]. The four effective viscosities measurable in a flow experiment are related to
the viscosity coefficients of equation (2) and equations (3)–(5) by

η1 = 1
2 (α4 + α6 + α3) = η + 1

6 η̃1 + 1
2 η̃2 + 1

4 (γ1 + γ2),

η2 = 1
2 (α4 + α5 − α2) = η + 1

6 η̃1 − 1
2 η̃2 + 1

4 (γ1 − γ2),

η3 = 1
2α4 = η − 1

3 η̃1, η12 = 4η4 − 2(η1 + η2) = α1 = 2η̃3. (6)

The antisymmetric part of the pressure tensor contributes to η1 and η2 but not to η3 and
η12. Notice that η1 + η2 + η3 = 3η + γ1/2, η1 − η2 = 2η̃2 = γ2, η1 + η2 − 2η3 = η̃1. By
symmetry arguments, the same set of viscosity coefficients can be used for ferrofluids in the
presence of a magnetic field. The director has to be replaced by a unit vector parallel to the
local magnetization which, for strong applied fields, is parallel to the direction of the external
field.

The following considerations are limited to the case of either zero or a ‘strong’ field.
Theories appropriate for dilute solutions, which just take into account that the magnetic field
affects or hinders the rotation of a particle and associate the magneto-viscous effect solely with
the antisymmetric part of the pressure tensor, imply that γ1 is nonzero and depends on the field
strength and the shear rate. In that case, however, one has η̃1 = 0, η̃2 = 0, and consequently
η1 − η2 = γ2 = 0, as well as η12 = 0. Then the McTague [39] viscosity coefficients
η‖ = η1 and η⊥ = (η2 + η3)/2 become equal to η + γ1/4 and η + γ1/8, respectively. The
anisotropy observed for the ferrofluids of [39] are indeed of that type. In general, the anisotropy
found in more concentrated ferrofluids is more complex and it is expected that all viscosity
coefficients needed by symmetry considerations will be nonzero. So far, there is no precise
experimental data available for the complete set of coefficients. However, experimentally
observed effects due to the influence of magnetic fields on the rotation of single magnetic
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nanoparticles, as well as cooperative phenomena and their importance for viscous effects in
ferrofluids, have been reviewed in [40–42]. In particular, a change of field-induced increase
of viscosity due to variation of the shear rate applied to the fluid has been reported in [43],
see also [44]. The transition area between elastic and viscous behaviour for a conventional
ER fluid and a state-of-the-art MR fluid through the use of oscillatory rheometry techniques
has been investigated [45]. More recently, neutron scattering [46] and microgravity [47] have
been applied to resolve structural effects and flow profiles in MR fluids. Inhomogeneities in
particle concentration have been considered in order to explain an enormous increase of yield
stresses of MR and electro-rheological (ER) suspensions subjected to magnetic or electric
fields in [48–51].

Next, we will derive explicit expressions for the anisotropic viscosities from a FP equation.

3. Fokker–Planck equation for ferrofluids

Consider an ensemble of n non-interacting, identical, rigid, ferromagnetic ellipsoids of
revolution (axis ratio Q, shape factor B ≡ (Q2 −1)/(Q2 + 1)) per volume. Spherical particles
constitute a special case (B = 0), while the ellipsoidal shape accounts for the formation of
effectively ellipsoidal clusters. We assume the system to be spatially homogeneous, so that the
state is described by the probability distribution function f (u; t) of an ellipsoid being oriented
in the direction of the unit vector u at time t . Furthermore, it is assumed that the symmetry
axis coincides with the direction of magnetization of the particles, µ = µu. The motion of a
single ellipsoid is influenced by rotational diffusion, motion due to an external potential V and
the hydrodynamic drag caused by velocity field v. The dynamics is conveniently described by
the kinetic equation [24, 52, 53]

∂t f = −L · (ω + Bu × γ · u) f + 1
2τ−1L · f L[ln f + V/kBT ], (7)

where the potential V for a magnetic moment µ = µu in the local magnetic field H is given
by −βV = βµH · u = h · u, with β ≡ 1/(kBT ). Hereby the dimensionless magnetic field
h = µH/kBT and its amplitude h (Langevin parameter) are introduced, where L = u × ∇u

is the rotational operator with ∇u being the gradient on the unit sphere. For spheres, B = 0,
equation (7) reduces to the kinetic equation for dilute ferrofluids given in [11, 12, 53]. The
relaxation time τ of the ellipsoidal unit is related to its rotary diffusion coefficient Dr and
its rotary friction coefficient ζrot = 6VpηseQ via D−1

r = 2τ = ζrot/kBT [13], where ηs is
the shear viscosity of the Newtonian solvent, eQ is the shape factor given below3 and Vp

denotes the volume of a single ellipsoid. The magnetization (density) M is obtained from
the first moment of the distribution function as M = nµ〈u〉. The FP approach (7) neglects
magnetization inertia effects.

3.1. Pressure tensor and magnetization

The hydrodynamic pressure tensorp for an incompressible dilute suspension of rigid ellipsoidal
particles is, according to [52–54],

p = −2ηs(1 + 5φQ1)γ + p
pot

(8)

− 10ηsφ{(2Q3 − B Q0) γ · 〈uu〉 − (Q23 − 2B Q0) γ: 〈uuuu〉 },
pa = −n〈LV 〉, (9)

3 For slightly deformed spheres with axis ratio Q = 1 + ε, ε � 1 one finds B = ε and for the geometric
coefficients Qi and eQ up to O(ε2): Q0 = 3ε/5 − 9ε2/50, Q1 = 1/2 − ε/7 + 47ε2/294, Q2 = −2ε/7 + ε2/21,
Q3 = 3ε/14 − 13ε2/2940. Q23 ≡ 3Q2 + 4Q3, Q32 ≡ Q3 − Q2, eQ ≡ (5Q0)/(3B) = 1 + ε/5 + 179ε2/350. More
explicit expressions for these coefficients for all Q are given in [13].
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where ηs is the shear viscosity of the Newtonian solvent and φ stands for the packing fraction.
The geometric coefficients Qi = Qi (Q) are defined in [11, 13] (and also see footnote 3) and
the anisotropic potential contribution is given by

p
pot = −nkBT B〈 u∇u (ln f + V/kBT )〉. (10)

Here and below, 〈··〉 denotes an average with respect to the distribution function f , where the
integration is performed over the three-dimensional unit sphere. The antisymmetric part of the
stress tensor is of the form also used in [52, 55, 56, 58–73], while an additional antisymmetric
stress has been proposed in [57]. Inserting the potential V into equations (9) and (10) one
obtains

p
pot = −nkBT B(3〈 uu 〉 − 〈u〉h + 〈uuu〉 · h ), (11)

pa = nkBT 〈u〉 × h = M × H, (12)

where equation (11) is obtained from equation (10) by an integration by parts, and the
above definitions for the dimensionless magnetic field h = µH/kBT and the magnetization
M = nµ〈u〉 are used to rewrite the pseudo-vector pa. In the absence of a flow field,
equation (7) yields a unique equilibrium state feq. The approach to equilibrium is monitored by
the dimensionless free energy functional per particle, F[ f ] = ∫

S2
d2u f (u) ln( f (u)/ feq(u)).

The equilibrium magnetization directly obtained from the equilibrium distribution of the FP
equation is Meq = nµ 〈u〉eq = nµL(h)h/h, where L(x) ≡ coth(x) − 1/x is the Langevin
function. This equilibrium magnetization is the classical result for a system of non-interacting
magnetic dipoles. The stationary solution to equation (7) in the case of steady potential flow,
ω ≡ 0, can also be found explicitly [13]. From the kinetic equation (7), the dynamics of the
kth moment 〈uα1 · · · uαk 〉 is obtained by multiplying the FP equation by uu . . . and subsequent
integration over the unit sphere. The equation for the first moment,k = 1, i.e. the magnetization
M , is therefore

∂t 〈u〉 = ω × 〈u〉 + B〈(1 − uu)u〉: γ − 1

τ
〈u〉 +

1

2τ
(1 − 〈uu〉) · h. (13)

The one for the second moment is worked out in [13]. Using these equations of change,
the explicit contribution of the potential V to the full stress tensor can be eliminated [52]. In
particular, one obtains for the antisymmetric part (12), upon inserting the following result [13]:

h = τΠ−1 · (∂t 〈u〉 − ω × 〈u〉 − B[γ · 〈u〉 − 〈uuu〉: γ] + τ−1〈u〉), (14)

where Π−1 denotes the inverse of the matrix Π ≡ (1 − 〈uu〉), an expression for pa in terms
of the moments alone. In the absence of potential forces and for γ̇ → 0, the steady state
pressure tensor p reduces to p = −2η0γ, with the zero-shear viscosity of a dilute suspension
of magnetically neutral ellipsoidal particles with axis ratio Q and shape coefficients Qi [13]
(and also see footnote 3) as follows: η0 = ηs{1 + φ(5Q1 + (2Q3 − Q2))}. Therefore Einstein’s
formula η0 = (1 + 5φ/2)ηs is recovered from this expression for spherical particles (see
footnote 3). For later use we introduce the extra viscosity

η
φ

0 ≡ η0 − ηs = φ(5Q1 + (2Q3 − Q2))ηs, (15)

which arises due to the presence of ellipsoidal aggregates at concentration φ. Due to the
hydrodynamic drag and the magnetic field, the equation for the moment of order k couple to
moments of order k ± 1 and k ± 2 (k � 0). Therefore, a finite set of closed equations for
the macroscopic magnetization and the macroscopic pressure tensor p cannot in general be
derived from the kinetic model unless some approximations are invoked.
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3.2. Pressure tensor and viscosities in terms of order parameters

In order to obtain more explicit expressions for the stress tensor and the viscosity coefficients,
we now consider the class of distribution functions, which are uniaxially symmetric with
respect to the unit vector n. Therefore f has the representation 4π funi(u · n) = ∑∞

j=0(2 j +
1)−1Sj Pj (u · n), with the scalar order parameters Sj = 〈Pj (u · n)〉, and Pj are Legendre
polynomials. The Sj are bounded, 0 � S1 � 1 and −1/2 � Sj � 1 for j > 1. In the
equilibrium state, n coincides with the unit vector of the magnetic field direction. Moreover,
the orientational order parameters can be calculated explicitly as a function of the magnetic
field, while satisfying the recursion relation Seq

j+1(h) = Seq
j−1(h) − (2 j + 1)Seq

j (h)/h with
Seq

0 = 1 and Seq
1 (h) is identical to the Langevin function L(h). For spherical particles, we have

shown in [11] that the assumption of uniaxial symmetry leads to very accurate results also out
of equilibrium, even if the actual distribution function is not strictly uniaxial symmetric. The
validity of the assumption of uniaxial symmetry for non-spherical particles is discussed in the
next section. It should be noted that the so-called effective field approximation [12] assumes
a special subset of uniaxially symmetric distribution functions with Sj = Seq

j (ξe), n = ξe/ξe,
with ξe the effective field and ξe its norm.

Under the assumption of uniaxially symmetric distribution functions we obtain from
equation (13) time evolution equations for the orientational order parameter S1 and a balance
equation for the director, see [13]:

Ṡ1 = 3
5 B(S1 − S3)(γ: nn) − 2Dr S1 + 2

3 Dr (1 − S2)(h · n), (16)

(1 − nn) ·
[

Dr h − 3S1

2 + S2
N + B

3(3S1 + 2S3)

5(2 + S2)
γ · n

]
= 0. (17)

Under the same assumption, the pressure tensor (8) and (9) is found to be of the form assumed
in the Ericksen–Leslie theory [74, 75] and the viscosity coefficients can be identified [13]. In
particular, upon inserting equation (13) into the antisymmetric stress tensor (12), we recover
the Ericksen–Leslie form for pa = γ1(N × n) + γ2(γ · n) × n with the viscosity coefficients
(� ≡ 12η

φ

0 eQ/5 = 6ηsφeQ)

γ1 = �
3S2

1

2 + S2
, γ2 = −�B

3S1(3S1 + 2S3)

5(2 + S2)
. (18)

For spherical particles, B = 0, eQ = 1, we recover the result obtained in [11]. Equation (18)
introduces also the viscosity coefficient γ2, which is absent in the kinetic model introduced
in [12]. In the context of molecular liquids and liquid crystals, this term is known to be
responsible for the flow alignment phenomenon [75, 76]. According to the result stated
in equation (18), the enhancement of the rotational viscosity for non-spherical units is just
given by the quantity eQ characterizing the shape alone (see footnote 3). While e|Q=1 = 1,
for an axis ratio of Q = 10 we predict an increase in γ1 by about 800%. For later use,
we introduce a ‘tumbling parameter’ λt ≡ −γ2/γ1 = B(3S1 + 2S3)/(5S1), which results
from (18). From equation (16), the angle h−1h · n between the direction of the magnetic
field and the magnetization can also be calculated to give h−1h · n = 3S1h−1(1 − S2)

−1{1 −
3B(S1 − S3)(5S1)

−1τγ: nn}. The term proportional to B is responsible for the flow alignment
of non-spherical particles, which is being suppressed with increasing magnetic field due to the
prefactor h−1.

In the weak flow regime and within the assumption of uniaxial symmetry, the order
parameters Si may be replaced by the explicitly known equilibrium values Seq

i in all the
above expressions. In particular, in this regime one obtains γ 0

1 = �hL2(h)/(h − L(h)) and
γ 0

2 = −�B L(h)[(6 + h2)L(h) − 2h]/{h(h − L(h))}. This result equals the one obtained
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using the effective field approximation [12, 13]. Thus, deficiencies of the effective field
approximation in the weak flow regime are due to the assumed uniaxial form of the distribution
function. The effective field approximation can also be used outside the weak flow regime. The
quality of this approximation had been discussed for the case of spheres (B = 0) in [11, 77, 79].
In [79] it is shown that the effective field approximation in the case B = 0 becomes exact in
the limits of weak and strong magnetic fields h and that the approximation can be considered
accurate for all values of h with deviations of less than 5%.

If the magnetization (and not necessarily the magnetic field) is oriented parallel to the flow,
gradient and vorticity direction, the Miesowicz (shear) viscosities η1, η2, η3 are measured,
respectively. Using the above expressions we obtain the following results in terms of order
parameters and shape coefficients:

η1 − η0

η
φ

0

= 3eQ

5

3S2
1

2 + S2
(1 − λt) +

(
2

7
Q32 − Q0

)
S2 +

8

35
Q23 S4, (19)

η2 − η0

η
φ

0

= 3eQ

5

3S2
1

2 + S2
(1 + λt) +

(
2

7
Q32 + Q0

)
S2 +

8

35
Q23S4, (20)

η3 − η0

η
φ

0

= −4

7

(
Q32 S2 +

1

10
Q23 S4

)
, (21)

where the shape coefficients eQ, B, Qi are tabulated below (see footnote 3). As noted in
section 2 a fourth viscosity coefficient η12 has been introduced in order to fully characterize
the shear viscosity, which becomes η12 = α1 = −2η

φ

0 Q23 S4, The difference between the first
two Miesowicz viscosities is found to be given by

η2 − η1

η
φ

0

= 6eQ

5

3S2
1

2 + S2
λt + 2Q0 S2. (22)

A discussion on the validity of Parodi’s relation, which implies η1 − η2 = γ2, can be found
in [13]. The McTague viscosities are obtained from the Miesowicz viscosities through relations
given in section 2. Dilute suspensions of non-spherical particles also show normal stress effects,
which have been derived within the present framework in [13].

From equations (19)–(21) the effect of the shape of ellipsoids on the Miesowicz viscosities
for the case of weak shear flow and under the assumption of uniaxial symmetry, where
∀i Si = Seq

i is approximately valid, is immediately explored. Examples are shown in figures 2
and 3. The case of a perfectly aligned model MR fluid to be studied by simulation in section 5
corresponds to ∀i Si = 1.

4. Nonequilibrium Brownian dynamics (NEBD) simulation

In order to discuss the validity of the assumptions made in the previous sections,we here present
simulation results of the numerical solution of the full kinetic model (7). The numerical solution
is obtained by Brownian dynamics (BD) simulations of the stochastic process Ut that satisfy
the following stochastic differential equation corresponding to the kinetic equation [80]:

dUt = Pt · [(ω × Ut + Bγ · Ut + h) dt + dWt ] − Ut
dt

τ
, (23)

The projector perpendicular to Ut is denoted by Pt ≡ (1−UtUt) and Wt is a three-dimensional
Wiener process [80]. Using Itô’s formula, it is verified that equation (23) conserves the
normalization of Ut . In order to integrate equation (23) numerically, a weak first-order scheme
is used. By construction, the numerical scheme guarantees the normalization of the random



S1412 M Kröger et al
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Figure 2. Miesowicz and rotational viscosities (η1,2,3 − η0)/η
φ

0 , η12/η
φ

0 and γ1,2/η
φ

0 according
to equations (18)–(21)—valid at low concentrations—versus shape coefficient Q, cf figure 1, and
evaluated for the case where the strong magnetic field dominates, i.e. the order parameters are set to
∀i Si = 1. Notice that the viscosities η0 and η

φ
0 ≡ η0 −ηs depend on the shape Q via equation (15),

where ηs denotes the viscosity of the solvent, and expressions for the geometric coefficients Q1,2,3
(see footnote 3), etc, appear in (15). In order to eliminate η0, differences between the relative
viscosities may be favoured to compare with experiment.
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Figure 3. Same quantities as for figure 2 but for the case of weak shear flow, i.e. order parameters
are set to their equilibrium values ∀Si = Seq

i (h) with h = 0.1. An explicit recursion relation for
Seq

i is given in section 3.2.

unit vector Ut [80]. A slightly different approach has been used to study cluster structures and
magnetic characteristics of ferromagnetic particles in [81, 82]. For various initial conditions,
the simulations are performed for an ensemble of 105 random unit vectors Ut with time step
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Figure 4. Orientational order parameters Si as a function of reduced magnetic field h for plane
Couette flow v = (γ̇ y, 0, 0) and magnetic field oriented in the y direction. The Péclet number is
Pé = γ̇ τ = 0.1 and the axis ratio was chosen as Q = 5. Full curves correspond to the equilibrium
values Seq

i , while symbols are obtained from the BD simulations using 〈u〉 = S1n. The ordering
of the curves from top to bottom is i = 1, 2, 3, 4.

10−3τ . Plane Couette flow is considered in order to allow comparison to the analytical results
discussed above. In figure 4, the equilibrium order parameters Seq

j (h) are shown together with
those obtained from the BD simulations for a weak shear rate and magnetic field oriented
in the gradient direction of the flow. From the BD simulations, S1 and the director n are
defined by 〈u〉 = S1n, while higher-order parameters are obtained by suitable contractions
of n with moments 〈uu〉, 〈uuu〉 and 〈uuuu〉. From figure 4 we observe that Si for i � 4
are very accurately described by their equilibrium values. A similar accuracy is obtained if
the equilibrium value n = h/h is chosen. Figure 5 shows the results of the BD simulations
for the shear viscosities in comparison to the results in section 3.2 based on the assumption
of uniaxial symmetry, where the values of the director components and the order parameters
were extracted from the BD simulation. It is seen from figure 5 that the results of section 3.2
agree qualitatively with the numerical simulations. The assumption of uniaxial symmetry is
violated for weak magnetic fields so that results of section 3.2 represent approximations to the
actual viscosities, see the schematic diagram in figure 6 which summarizes the findings.

There have been a number of interesting simulation studies of field-induced rheology,
see [83, 84] for 3D BD studies in steady shear including a phase diagram in λ, γ̇ space, and
[85] and [41] for 2D athermal Stokesian dynamics simulations with a highly accurate treatment
of hydrodynamic and electrostatic interactions (but only 25 particles) in steady and oscillatory
shear, respectively.

5. Nonequilibrium molecular dynamics (NEMD) simulation

In a molecular dynamics (MD) computer simulation for a substance composed of N particles,
Newton’s equations of motion are integrated numerically. Periodic boundary conditions and
the nearest image convention are used in order to minimize surface effects. For particles
with rotational degrees of freedom also, equations of motion for angle variables, involving
the torque acting on particles, have to be solved. The temperature T of the system is linked
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Figure 5. Viscosity change pyx/γ̇ −ηs as a function of reduced magnetic field h for plane Couette
flow v = (γ̇ y, 0, 0). The Péclet number is Pé = γ̇ τ = 0.1 and the axis ratio was chosen as
Q = 5. The ordering of the curves from top to bottom corresponds to magnetic fields parallel
to the velocity gradient, the velocity and the vorticity directions, respectively. Symbols denote
results from BD simulation, while the full and broken lines represent the semi-analytical results of
section 3 where the values for the order parameters and director components were obtained from
the BD simulation.

with the part of the kinetic energy K which is not associated with a macroscopic motion:
3(N − 1)kBT/2 = K ≡ ∑

i m(ci)2/2, where ci is the translational ‘peculiar velocity’. The
simplest version of a ‘thermostat’, also used here, involves rescaling the peculiar velocity after
each time step by the factor (Twanted/Tmeasured)

1/2. Other thermostats, e.g. those referred to as
‘Gaussian’ and ‘Nosé-Hoover’ [86], may also be imposed as constraints. The observables
of interest, such as the internal energy and the components of the pressure or the stress
tensor, are calculated from the known positions and velocities of the particles as time averages
according to the rules of statistical physics. Similarly, more detailed information can be
obtained from the simulation, such as the velocity distribution function, the pair correlation
function or the static structure factor, which can also be measured in scattering experiments [27].
Dimensionless or ‘scaled’ variables are used which are denoted by the same symbols as the
physical variables when no danger of confusion exists. For a system of spherical particles
whose forces are derived from Lennard-Jones (LJ) potential �, depending on the distance r :
� = �LJ ≡ 4�0[(r0/r)12−(r0/r)6], lengths and energies are presented in units of the diameter
r0 and the potential depth �0. The units used for the particle density and temperature are r−3

0

and k−1
B �0. The time is scaled with the reference time t0 = r0m1/2�

−1/2
0 , where m is the mass

of a particle. The pressure, the shear rate and the viscosity of the LJ fluid are expressed in units
of r−3

0 �0, t−1
0 and r−3

0 �0t0 = r−2
0 m1/2�

1/2
0 . In the simulations, the cut-off of the interaction

at a finite distance rcut is often achieved just by putting the potential and the force equal to zero
for r > rcut, e.g. with rcut = 2.5r0. When only the repulsive r−12 part of the LJ interaction
potential is taken into account, one speaks of a ‘soft sphere’ (ss) potential. Often, this potential
is written as � = �ss

0 (r0/r)12 without the factor of 4 of the LJ potential. When reduced ss-units
with �ss

0 as energy reference are used, T = 1/4 in ss-units is equivalent to T = 1 in LJ-units.
Results to be reported in section 5 have been obtained for this particular temperature T = 1/4.

A simple shear flow in the x direction with the gradient in the y direction can be generated
either by moving boundaries or forces [87–89], or as implemented here, by moving image
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Figure 6. The shaded background represents a measure for the (minor) relevance of biaxiality—
obtained via BD—on the prediction of rotational viscosity γ1 as a function of dimensionless
magnetic field h and vorticity τ γ̇ [11]. Shading ranges from white (uniaxial) to black. In the
top left corner (data for τ γ̇ = 10, h = 1) we have a 1.2% relative deviation between uniaxial (18)
and biaxial formulae [11] for γ1. The depicted regimes refer to analytical solutions of the FP
equation. A: weak magnetic field, B: weak flow field, C: deterministic limit, discussed in section 3.
The figure summarizes analytical as well as approximate results for these regimes.

particles undergoing an ideal Couette flow with the prescribed shear rate γ̇ = ∂vx/∂y
(homogeneous shear). For details on the realization of a NEMD shear flow we wish to refer
to the reviews [27, 28] and references cited herein.

6. Magneto-rheological fluids via NEMD

6.1. Perfectly aligned moments

The model studied here deals with a relatively dense solution of a MR fluid, or alternatively,
a ferrofluid subject to large external magnetic field. The particles occupy 10% or more of the
available volume. It is assumed that the applied magnetic field is strong enough, such that all
magnetic moments are perfectly parallel to the external field. In addition to a repulsive isotropic
interaction, the angle dependence of the dipole–dipole interaction is taken into account. For
computational simplicity, the interaction is cut off at a finite distance. Thus effects associated
with the long-range character of the dipole–dipole interaction are disregarded within this model.
However, they can be taken into account by considering Ewald summations or a reaction
field as described in [90]. Furthermore, it is assumed that the dynamics is dominated by the
particle–particle interaction, the background fluid (solvent) enters only via the local thermostat
which removes the heat generated in a viscous flow. Of course, additional friction forces and
fluctuating forces due to the solvent can and have been taken into account [41, 85, 91].
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Table 1. The (potential contributions to the) Miesowicz viscosities η1,2,3, the Helfrich viscosity
η12, the Leslie viscosities γ1,2 and the coupling coefficient κ of the SSD ferrofluid at n = 0.6, for
λ = 0.8. The data are inferred from the NEMD simulations [30], in the limit of small shear rates.

Model η1 η2 η3 η12 γ1 γ2 κ

SSD 0.63(5) 0.43(4) 0.50(5) 2.0(1) 0.16(2) 0.17(2) 0.6(1)

Spherical colloidal particles with a magnetic core as they occur in ferrofluids in the
presence of an applied magnetic field parallel to the unit vector n, have been modelled by
soft spheres plus a dipole–dipole interaction (SSD) [92]:

� = �ss
0

[(
r0

r

)12

− λ

(
r0

r

)3

(3r−2(r · n)2 − 1)

]
. (24)

The parameter λ > 0 is proportional to the square of the (induced) magnetic moments of
the particles which are parallel to n, i.e. λ = µ2/T in reduced simulation units. The quantities
r0 and �ss

0 set the length and energy scales.

6.2. Viscosity coefficients

Pairs of particles feel a disc-like interaction (corresponding to r < 1, B < 0) since, for fixed
relative kinetic energy, they can approach each other more closely in the direction parallel to n

rather than in the perpendicular directions. Thus it is not surprising that ferrofluids subject to
strong magnetic fields, but small λ compared to that of a typical MR fluid, show an anisotropy
analogous to nematic discotic liquid crystals [1, 93]. In table 1, NEMD results are presented
for the only state point where all viscosities (except the bulk viscosity) have been determined.

When the dipole–dipole interaction is stronger (the regime of MR fluids), however, chains
are formed which, at higher densities, are arranged in partially ordered spatial structures. This
affects the viscous behaviour in a dramatic way. An example is shown in figure 7 where the
viscosities η1 (magnetic field parallel to the flow velocity) and η2 (magnetic field parallel to the
gradient of the flow velocity) are plotted as functions of the anisotropy (or magnetic interaction)
parameter λ. The state point is n = 0.6 in soft sphere units and the shear rate is γ̇ = 0.06 (and
T = 1/4, of course). The interaction is cut-off at rcut = 2.5r0, and (r0/r)3 in (24) is replaced
by (r0/r)3 − (r0/rcut)

3 +3(r0/rcut)
4(r/r0 −rcut/r0) in order to achieve a smoother cut-off. The

simulations were made with N = 1000 particles [94]. For 0 < λ < 1, the discotic behaviour
η1 > η2 is seen in figure 7. For λ > 1, the viscosity η2 for the field parallel to the gradient
direction increases strongly with increasing λ. Notice that a logarithmic scale is used for the
viscosity.

The viscosities and the shear-induced structural changes were analysed in orientations 1
and 2 for number densities between n = 0.2 and 0.8, corresponding to packing fractions of
about 0.1–0.4, and for the magnetic interaction strength λ ranging from 0 to 8/3. Figure 8
shows results for a specific case of interest. Breaking and reformation of chains and of more
complex structures, under shear flow, have been observed.

Model predictions for the Miesowicz viscosities based on the measured shape of
agglomerates Q versus dimensionless magnetic moment µ, or

√
λ/2 in terms of the interaction

parameter λ, are shown in figure 9. The data for Q and η1,2 are obtained from NVT MD
simulation (reduced shear rate γ̇ = 0.1, packing fraction φ = 0.31). Here, the shape
Q is obtained from the locations of the first relative minimum of the structure factor at
low wavevector transfer, when evaluated parallel and perpendicular to the magnetization,
respectively, i.e. r = q⊥/q‖.
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Figure 7. The viscosity coefficients η1, η2 plotted as a function of the strength λ of the dipole–
dipole interaction for φ = 0.31 and γ̇ = 0.06 in soft sphere units (data obtained via MD).
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Figure 8. The effect of λ on the potential contribution to the shear viscosity η2 versus shear rate
γ̇ in soft sphere units. Data obtained from MD, cf figure 7.

The microstructure and its relation to the magnetic properties of ferrofluids are often
investigated by performing a cluster analysis. In conventional cluster analysis, agglomerates
are usually defined on the base of the spatial proximity between the particles or by means of
an energy criterion. For ferrofluids the latter one is more favourable, because the anisotropic
dipolar interaction implies that two neighbouring particles can form a stable bonding only if
their dipole moments are roughly aligned in head-to-tail orientation. The energetically based
cluster analysis of ferrofluids has been done in several different ways [22, 95–99]. In [22, 95–
97] two particles are considered to be bound if their dipolar potential energy is less than a
predetermined value. The influence of using different threshold values for this value had been
investigated in [100]. The rather simple definition based on the structure factor is based on
the fact that ellipsoidal shaped particles with homogeneous scattering density yield ellipsoidal
shaped structure factors as long as the packing fraction is low and spatial correlations between
clusters are negligible.

In figure 9—for comparison—the predictions of the affine transformation model [101]
η1 = ηiso Q−2, η2 = ηiso Q2, see also figure 10, and the results presented in section 3
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Figure 9. Model predictions for the Miesowicz viscosities η1,2 based on the measured shape of
agglomerates Q versus magnetic interaction parameter λ. Data for Q and η1,2 are taken from [30],
where Q is obtained from the anisotropy of the structure factor at low wavevector transfer in a NVT
MD simulation (500 particles, reduced temperature T = 1/4, reduced shear rate γ̇ = 0.1, packing
faction φ = 0.31). For comparison, the predictions of the affine transformation model [101] and
the results presented in section 3 for ellipses are included in this plot.
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Figure 10. Comparison between the predictions for reduced Miesowicz viscosities η1,2 (here
η1,2 = 1 for spheres, i.e. Q = 1) for the two models discussed in figure 9 versus axis ratio Q of
ellipsoids of revolution. Notice that η1 < η2 and η1 > η2 is predicted from both models for Q > 1
(prolate) and Q < 1 (oblate ellipsoids), respectively.

are included. The two latter models assume a low packing fraction and do not consider
dipolar interaction between particles, and therefore deviate from the MD results. In linear
order Q = 1 + ε the affine transformation model yields (η2/1 − ηiso)/ηiso = 1 ± 2ε and
(η1−η2)/ηiso = −4ε, while our equation (19) yields (η1−η1|Q=1)/(η1|Q=1−ηs) = 1−41/70ε,
(η2 − η2|Q=1)/(η2|Q=1 − ηs) = 1 + 32/35ε, where ηs denotes the viscosity of the solvent.
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Figure 11. Effect of shear rate on the static structure factor (φ = 0.31, magnetic field in the y
direction, see figure 1, magnetic interaction strength λ = 2), contour-projected onto the shearing
plane, extracted from NEMD particle configurations for three shear rates γ̇ = 0.01 (a), γ̇ = 0.5
(b) and γ̇ = 1 (c).

A yield stress occurs for the higher values of the dipole–dipole interaction. This is typical
for the MR fluids, which are similar to the ferrofluids under a strong magnetic field, but which
are composed of particles with stronger dipole–dipole interactions and usually contain a higher
volume fraction of colloidal particles. ER fluids can, with appropriate modifications, also be
treated theoretically by the model. For simulations where solvent effects and hydrodynamic
interactions are also taken into account, see [91]. The transition from the ferrofluid to the
magneto-rheological behaviour, with increasing magnetic interaction, is analogous to what
one might expect in a nematic discotic system which can undergo a transition to a columnar
phase at lower temperatures.

6.3. Shear thinning and shear-induced structural changes

The chains formed in MR fluids break and are reformed under shear. The viscosity becomes
smaller with increasing shear rate: shear thinning [81, 82]. In figure 8, the viscosity η2, namely
with the magnetic field parallel to the gradient direction, is plotted as a function of the shear rate
for various values of the parameter λ determining the strength of the dipole–dipole interaction.
The behaviour seen is typical for MR fluids.

Structural changes associated with this behaviour can and have been analysed in the
simulations by inspecting snapshots of particle positions by computing (partial) pair-correlation
functions and the anisotropy of the static structure factor. The latter quantity can be measured,
for example, in neutron scattering experiments [46]. An example for the influence of an
increasing shear rate on the structure factor is shown in figure 11.

Ferrofluids composed of particles with strong permanent dipole moments and sufficiently
high concentration form wormlike chains even when no magnetic field is applied [102].
The agglomerates can break by thermal agitation, and even more so, when subjected to a
shear flow. This leads to a pronounced shear thinning behaviour, analogous to that seen in
NEMD computer simulation studies of wormlike micellar systems, cf [32]. Given the strength
of the ‘binding energy’ or ‘scission energy’ Esc between neighbours in a linear chain, the
dependence of the average (dimensionless) chain length, which may also be considered as
the axis ratio of an ellipsoid, Q, on the shear rate, can be computed [33]. For an alternative
approach, the ‘chain model of electrorheology’, which also predicts shear-induced lifetimes
of chains, we refer the interested reader to [103]. In equilibrium, one expects—for stiff linear
chains—a simple exponential increase of the number averaged length with Esc and a square
root increase with concentration, i.e. Q ∝ φ1/2 exp(Esc/2kBT ). For the MR system under
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Figure 12. Analytically predicted effect of shear rate on the average length L̄ for a wormlike
micellar solution (φ = 0.04) parametrized in the scission energy Esc [33]. A relationship between
the scission energy Esc and the magnetic interaction parameter behaviour of MR fluids and wormlike
micellar solutions is established in the text.

consideration, the scission energy may be roughly estimated from the energy minimum in (24),
with r ‖ n, i.e. Esc = �0λ

4/3(3/2)2−1/3. We therefore expect for the number average Q ∝
φ1/2 exp(3λ4/32−1/3) and a monoexponential distribution of lengths, at low concentrations.
Corrections for higher concentrations and the effect of semiflexibility (persistence length)
and ring formation on the shape of agglomerates has been discussed, for example, in [104].
The effect of alignment and stretching of transient chains on their length distribution, the
shear viscosity and normal stresses in the (magnetic) field-free case has been estimated in the
framework of a modified Rouse model [33]: a sample result is reproduced in figure 12.

Due to the stretching and alignment, shear thinning is also observed when chains do not
break. From the computer simulations we infer that the shear rate dependence of the normal
stress differences is a more sensitive indicator of the breaking of chains. Thus measurements
of at least the first normal pressure difference of ferrofluids are of interest.

7. Conclusions

Some recent works on the rheology, dynamics and structure of ferrofluids and MR fluids
have been summarized and compared to each other. The FP equation discussed in this paper
provides a robust starting point for the description of the properties of dilute suspensions.
By solving the FP equation numerically (via BD simulation) the assumption of orientational
uniaxiality has been supported, namely figure 6. Using this assumption the complete set of
anisotropic viscosities has been expressed in terms of order parameters characterizing the
uniaxial phase, packing fraction and solvent viscosity. The magnetization is expressed in
terms of the first order parameter, and expressions for the equilibrium and stationary order
parameters have been obtained analytically as well as numerically. Dynamical equations for
the order parameters have also been given. While the FP equation incorporates the rotation of
individual moments caused by the vorticity of the flow field, and deformation or pseudoaffine
motion of nonspherical objects, within a MD (more microscopic) simulation one is confronted
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with the description of the coupling between flow and rotation of suspended particles due
to friction, and the effect of hydrodynamic screening within clusters of particles. In order
to prevent any ambiguities in the modelling approach, we presented results for an idealized
isothermal many-particle model of perfectly oriented magnetic moments (in the bulk), which
interact through soft-sphere repulsion and dipolar interaction. This model provides results
in qualitative agreement with experimental findings for ferrofluids subject to strong magnetic
fields and MR fluids. A sign change in the rotational viscosity γ2 upon increasing the magnetic
interaction parameter is predicted and now qualitatively understood. The calculation of the
effect of packing fraction on the rheological and structural behaviour still offers a number of
challenging aspects. The precise intermolecular potentials between ferromagnetic particles are
still unknown (and different for different coatings), and the size and shape of agglomerates,
and their dynamics, can be expected to be strongly depended on the form of these potentials.
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Note added in proof. An adjudicator motivated us to supplement this paper with the following discussion.
The referee expresses strong doubts about the validity of the expression for the antisymmetric, hydrodynamic

stress tensor, see equation (9). He/she states: ‘Here the hydrodynamic contribution corresponding to rotational friction
is missing. The term given in equation (9) is the antisymmetric part of the Maxwell pressure tensor. In the steady state
both should cancel, see the discussion in [57]. The equation is inconsistent with equation (8), where the hydrodynamic
contribution to the symmetric part of the pressure tensor is taken into account. The fact that antisymmetric stress
is treated incorrectly in many publications is no argument for repeating the error. It has been shown by Felderhof,
see [105], how magnetoviscosity comes about, even with a symmetric pressure tensor’.

Reference [105] is the more recent of the two references mentioned and abbreviated as ‘reference A’ in the
following. We should state why we consider, through equations (8) and (9), the hydrodynamic (part of the) pressure
tensor, which is the negative of the hydrodynamic stress tensor. In this paper we make a comparison with the Ericksen–
Leslie theory for the hydrodynamic stress, by which the viscosity coefficients are actually defined. According to
equation (1) the antisymmetric part of the pressure tensor is (1/2)ε · pa . with pa = −n〈LV 〉, cf our equation (8).
The potential V = −µH · u and magnetization M = nµ〈u〉 are defined after equation (7). We therefore have
pa = M × H , which is (now) explicitly stated in equation (11). Combining equations (3.2) of reference A—
which implies pa = −4ζ {ω − ω̃}, ω ≡ (∇ × v)/2—with equation (2.14) of the reference A—which gives
ω̃ = ω + (M × H)/(4ζ ), we just reobtains our equations (9) and (11). The hydrodynamic part corresponding
to rotational friction should therefore be present. The FP approach considered in this paper naturally disregards
magnetization inertia effects, which are usually small, and ‘may be neglected’, as pointed out after equation (2.13) of
reference A.
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